Detecting groups in large vector autoregressions
Guðmundur Guðmundsson and
Christian Brownlees
Journal of Econometrics, 2021, vol. 225, issue 1, 2-26
Abstract:
This work introduces the stochastic block vector autoregressive (SB-VAR) model. In this class of vector autoregressions, the time series are partitioned into latent groups such that spillover effects are stronger among series that belong to the same group than otherwise. A key question that arises in this framework is how to detect the latent groups from a sample of observations generated by the model. To this end, we propose a group detection algorithm based on the eigenvectors of a function of the estimated autoregressive matrices. We establish that the proposed algorithm consistently detects the groups when the cross-sectional and time-series dimensions are sufficiently large. The methodology is applied to study the group structure of a panel of risk measures of top financial institutions in the United States and a panel of word counts extracted from Twitter.
Keywords: Vector autoregressions; Time series; Random graphs; Community detection; Spectral clustering; Forecasting (search for similar items in EconPapers)
JEL-codes: C3 C32 C55 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762100124X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:225:y:2021:i:1:p:2-26
DOI: 10.1016/j.jeconom.2021.03.012
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().