Identification of structural vector autoregressions through higher unconditional moments
Alain Guay
Journal of Econometrics, 2021, vol. 225, issue 1, 27-46
Abstract:
This paper pursues two objectives. First, we determine the sufficient condition for local, statistical identification of SVAR processes through the third and fourth unconditional moments of the reduced-form innovations. Our findings provide novel insights when the entire system is not identified, as they highlight which subset of structural parameters is identified and which is not. Second, we elaborate a tractable testing procedure to verify whether the identification condition holds, prior to the estimation of the structural parameters of the SVAR process. To do so, we design a new bootstrap procedure that improves the small-sample properties of rank tests for the symmetry and kurtosis of the structural shocks.
Keywords: Bootstrap procedure; Excess kurtosis; Identification condition; Rank test; Skewness; Structural vector autoregression (search for similar items in EconPapers)
JEL-codes: C12 C32 C51 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620303651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:225:y:2021:i:1:p:27-46
DOI: 10.1016/j.jeconom.2020.10.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().