EconPapers    
Economics at your fingertips  
 

Censored quantile regression survival models with a cure proportion

Naveen Narisetty and Roger Koenker

Journal of Econometrics, 2022, vol. 226, issue 1, 192-203

Abstract: A new quantile regression model for survival data is proposed that permits a positive proportion of subjects to become unsusceptible to recurrence of disease following treatment or based on other observable characteristics. In contrast to prior proposals for quantile regression estimation of censored survival models, we propose a new “data augmentation” approach to estimation. Our approach has computational advantages over earlier approaches proposed by Wu and Yin (2013, 2017). We compare our method with the two estimation strategies proposed by Wu and Yin and demonstrate its advantageous empirical performance in simulations. The methods are also illustrated with data from a Lung Cancer survival study.

Keywords: Survival data; Cure proportion; Quantile regression; Mixture models; Data augmentation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620303997
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:226:y:2022:i:1:p:192-203

DOI: 10.1016/j.jeconom.2020.12.005

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:226:y:2022:i:1:p:192-203