Estimation and inference of semiparametric models using data from several sources
Moshe Buchinsky,
Fanghua Li and
Zhipeng Liao
Journal of Econometrics, 2022, vol. 226, issue 1, 80-103
Abstract:
This paper studies the estimation and inference of nonlinear econometric models when the economic variables are contained in different data sets. We construct a semiparametric minimum distance (SMD) estimator of the unknown structural parameter of interest when there are some common conditioning variables in different data sets. The SMD estimator is shown to be consistent and has an asymptotic normal distribution. We provide the explicit form of the optimal weight for the SMD estimation. We provide a consistent estimator of the variance–covariance matrix of the SMD estimator, and hence inference procedures of the unknown parameter vector. The finite sample performances of the SMD estimators and the proposed inference procedures are investigated in few alternative Monte Carlo simulation studies.
Keywords: Conditional moment restrictions; Data combination; Minimum distance estimation; Series estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621000385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:226:y:2022:i:1:p:80-103
DOI: 10.1016/j.jeconom.2020.10.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().