Volatility of volatility: Estimation and tests based on noisy high frequency data with jumps
Yingying Li,
Guangying Liu and
Zhiyuan Zhang
Journal of Econometrics, 2022, vol. 229, issue 2, 422-451
Abstract:
We establish a feasible central limit theorem with convergence rate n1/8 for the estimation of the integrated volatility of volatility (VoV) based on noisy high-frequency data with jumps. This is the first inference theory ever built for VoV estimation under such a general setup. The central limit theorem is applied to provide interval estimates of the VoV and conduct hypothesis tests. Furthermore, when one is interested in the null hypothesis that the VoV is zero, we show that a more powerful test can be established based on a VoV estimator with a convergence rate n1/5 under the null. Empirical results on the S&P 500 and individual stocks show strong evidence of non-zero VoV.
Keywords: Volatility of volatility; Central limit theorem; High frequency data; Microstructure noise; Semimartingale (search for similar items in EconPapers)
JEL-codes: C14 C22 G12 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621000701
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:229:y:2022:i:2:p:422-451
DOI: 10.1016/j.jeconom.2021.02.007
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().