Factor investing: A Bayesian hierarchical approach
Guanhao Feng () and
Jingyu He
Journal of Econometrics, 2022, vol. 230, issue 1, 183-200
Abstract:
This paper investigates the asset allocation problem when returns are predictable. We introduce a market-timing Bayesian hierarchical (BH) approach that adopts heterogeneous time-varying coefficients driven by lagged fundamental characteristics. Our approach estimates the conditional expected returns and residual covariance matrix jointly enables evaluating the estimation risk in the portfolio analysis. The hierarchical prior allows the modeling of different assets separately while sharing information across assets. We demonstrate the performance of the U.S. equity market, and our BH approach outperforms most alternative methods in terms of point prediction and interval coverage. In addition, the BH efficient portfolio achieves monthly returns of 0.92% and a significant Jensen’s alpha of 0.32% in sector investment over the past twenty years. We detect that technology, energy, and manufacturing are the most critical sectors in the past decade, and size, investment, and short-term reversal factors are heavily weighted in our portfolio. Furthermore, the stochastic discount factor constructed by our BH approach can explain many risk anomalies.
Keywords: Asset allocation; Bayes; Hierarchical prior; Estimation risk; Characteristics; Macro predictors; Risk factor (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762100258X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Factor Investing: A Bayesian Hierarchical Approach (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:230:y:2022:i:1:p:183-200
DOI: 10.1016/j.jeconom.2021.11.001
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().