EconPapers    
Economics at your fingertips  
 

Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors

Dongxiao Han, Jian Huang, Yuanyuan Lin and Guohao Shen

Journal of Econometrics, 2022, vol. 230, issue 2, 416-431

Abstract: We propose a robust post-selection inference method based on the Huber loss for the regression coefficients, when the error distribution is heavy-tailed and asymmetric in a high-dimensional linear model with an intercept term. The asymptotic properties of the resulting estimators are established under mild conditions. We also extend the proposed method to accommodate heteroscedasticity assuming the error terms are symmetric and other suitable conditions. Statistical tests for low-dimensional parameters or individual coefficient in the high-dimensional linear model are also studied. Simulation studies demonstrate desirable properties of the proposed method. An application to a genomic dataset about riboflavin production rate is provided.

Keywords: Confidence interval; Huber loss; Linear model; Post-selection inference (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621001639
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:230:y:2022:i:2:p:416-431

DOI: 10.1016/j.jeconom.2021.05.006

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:230:y:2022:i:2:p:416-431