GMM quantile regression
Sergio Firpo,
Antonio Galvao,
Cristine Pinto,
Alexandre Poirier and
Graciela Sanroman
Journal of Econometrics, 2022, vol. 230, issue 2, 432-452
Abstract:
This paper develops generalized method of moments (GMM) estimation and inference procedures for quantile regression models. We propose a GMM estimator for simultaneous estimation across multiple quantiles. This estimator allows us to model quantile regression coefficients using flexible parametric restrictions across quantiles. The restrictions and simultaneous estimation lead to efficiency gains compared to standard methods. We establish the asymptotic properties of the GMM estimators when the number of quantiles used is fixed and when it diverges to infinity jointly with the sample size. As an alternative to GMM, we also propose a minimum distance estimator over a given subset of quantiles. Moreover, we provide specification tests for the imposed restrictions. The estimators and tests we propose are simple to implement in practice. Monte Carlo simulations provide numerical evidence of the finite sample properties of the methods. Finally, we apply the proposed methods to estimate the effects of smoking on birthweight of live infants at the extreme bottom of the conditional distribution.
Keywords: Quantile regression; Generalized method of moments (search for similar items in EconPapers)
JEL-codes: C21 C31 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621001299
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:230:y:2022:i:2:p:432-452
DOI: 10.1016/j.jeconom.2020.11.014
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().