EconPapers    
Economics at your fingertips  
 

How should parameter estimation be tailored to the objective?

Peter Hansen and Elena-Ivona Dumitrescu

Journal of Econometrics, 2022, vol. 230, issue 2, 535-558

Abstract: We study parameter estimation from the sample X, when the objective is to maximize the expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises when a model is estimated for the purpose of describing other data than those used for estimation, such as in forecasting problems. A natural candidate for solving maxT∈σ(X)EQ(Y,T) is the innate estimator, θˆ=argmaxθQ(X,θ). While the innate estimator has certain advantages, we show that the asymptotically efficient estimator takes the form θ̃=argmaxθQ̃(X,θ), where Q̃ is defined from a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient under misspecification. Second, and more importantly, the likelihood approach requires a parameter transformation that depends on the true model, causing an improper mapping to be used under misspecification.

Keywords: Estimation; Model selection; LinEx loss; Multistep forecasting (search for similar items in EconPapers)
JEL-codes: C13 C18 C51 C52 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621001822
Full text for ScienceDirect subscribers only

Related works:
Working Paper: How Should Parameter Estimation Be Tailored to the Objective? (2020)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:230:y:2022:i:2:p:535-558

DOI: 10.1016/j.jeconom.2020.12.014

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:econom:v:230:y:2022:i:2:p:535-558