Heterogeneity in households’ stock market beliefs
Hans-Martin von Gaudecker and
Axel Wogrolly
Journal of Econometrics, 2022, vol. 231, issue 1, 232-247
Abstract:
We analyse a long panel of households’ stock market beliefs to gain insights into the nature of the levels, dynamics, and informativeness of these expectations. In a first step, we classify respondents into one of five groups based on their beliefs data alone. In a second step, we estimate models of expectations at the group level so that belief levels, volatility, and response to information can vary freely across groups. At opposite extremes in terms of optimism we identify pessimists who expect substantially negative returns and financially sophisticated individuals whose expectations are close to the historical average. Two groups expect average returns around zero and differ only in how they respond to information: Extrapolators who become more optimistic following positive information and mean-reverters for whom the opposite is the case. The final group is characterised by its members being unable or unwilling to quantify their beliefs about future returns.
Keywords: Stock market expectations; Household finance; Heterogeneity; Clustering methods (search for similar items in EconPapers)
JEL-codes: C38 D14 D83 D84 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621000403
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:231:y:2022:i:1:p:232-247
DOI: 10.1016/j.jeconom.2020.11.011
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().