Nonparametric comparison of epidemic time trends: The case of COVID-19
Marina Khismatullina and
Michael Vogt
Journal of Econometrics, 2023, vol. 232, issue 1, 87-108
Abstract:
The COVID-19 pandemic is one of the most pressing issues at present. A question which is particularly important for governments and policy makers is the following: Does the virus spread in the same way in different countries? Or are there significant differences in the development of the epidemic? In this paper, we devise new inference methods that allow to detect differences in the development of the COVID-19 epidemic across countries in a statistically rigorous way. In our empirical study, we use the methods to compare the outbreak patterns of the epidemic in a number of European countries.
Keywords: Simultaneous hypothesis testing; Multiscale test; Time trend; Panel data; COVID-19 (search for similar items in EconPapers)
JEL-codes: C12 C23 C54 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762100155X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:232:y:2023:i:1:p:87-108
DOI: 10.1016/j.jeconom.2021.04.010
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().