Relaxing conditional independence in an endogenous binary response model
Alyssa Carlson
Journal of Econometrics, 2023, vol. 232, issue 2, 490-500
Abstract:
For binary response models, the literature primarily addresses endogeneity by a control function approach assuming conditional independence (CF-CI). However, as the literature also notes, CF-CI implies conditions like homoskedasticity (of the latent error with respect to the instruments) that fail in many empirical settings. I propose an alternative approach that allows for heteroskedasticity, achieving identification with a conditional mean restriction. These identification results apply to a latent Gaussian error term with flexibly parametrized heteroskedasticity. I propose a two step conditional maximum likelihood estimator and derive its asymptotic distribution. In simulations, the new estimator outperforms others when CF-CI fails and is fairly robust to distributional misspecification.
Keywords: Binary choice model; Control function; Heteroskedasticity; Average structural function (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762100230X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Relaxing Conditional Independence in an Endogenous Binary Response Model (2021) 
Working Paper: Relaxing Conditional Independence in an Endogenous Binary Response Model (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:232:y:2023:i:2:p:490-500
DOI: 10.1016/j.jeconom.2021.09.015
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().