Identifying treatment effects in the presence of confounded types
Desire Kedagni
Journal of Econometrics, 2023, vol. 234, issue 2, 479-511
Abstract:
In this paper, I consider identification of treatment effects when the treatment is endogenous. The use of instrumental variables is a popular solution to deal with endogeneity, but this may give misleading answers when the instrument is invalid. I show that when an (unobserved) instrument is invalid due to correlation with the first stage unobserved heterogeneity, a proxy for the instrument helps partially identify not only the local average treatment effect, but also the entire potential outcomes distributions for compliers. I exploit the fact that the distribution of the observed outcome in each group defined by the treatment and the instrument is a mixture of the distributions of interest. I write the identified set in the form of conditional moment inequalities, and provide an easily implementable inference procedure. Under some tail restrictions, the potential outcomes distributions are point-identified for compliers. Finally, I illustrate my methodology on data from the National Longitudinal Survey of Young Men to estimate returns to college using college proximity as a proxy for the instrument low college cost. I find that a college degree increases the average hourly wage of the compliers by 15%–30%.
Keywords: Potential outcome; Instrumental variable; LATE; Compliers; Mixture models (search for similar items in EconPapers)
JEL-codes: C14 C21 C25 C26 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621001512
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Identifying treatment effects in the presence of confounded types (2021) 
Working Paper: Identifying Treatment Effects in the Presence of Confounded Types (2018) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:234:y:2023:i:2:p:479-511
DOI: 10.1016/j.jeconom.2021.01.012
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().