Identification and estimation of triangular models with a binary treatment
Santiago Pereda-Fernández
Journal of Econometrics, 2023, vol. 234, issue 2, 585-623
Abstract:
I study the identification and estimation of a nonseparable triangular model with an endogenous binary treatment. I impose neither rank invariance nor rank similarity on the unobservable term of the outcome equation. Identification is achieved by using continuous variation of the instrument and a shape restriction on the distribution of the unobservables, which is modeled with a copula. The latter captures the endogeneity of the model and is one of the components of the marginal treatment effect, making it informative about the effects of extending the treatment to untreated individuals. The estimation is a multi-step procedure based on rotated quantile regression. Finally, I use the estimator to revisit the effects of Work First Job Placements on future earnings.
Keywords: Copula; Endogeneity; Policy analysis; Quantile regression; Unconditional distributional effects (search for similar items in EconPapers)
JEL-codes: C31 C36 J22 J31 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622000410
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Identification and estimation of triangular models with a binary treatment (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:234:y:2023:i:2:p:585-623
DOI: 10.1016/j.jeconom.2021.11.019
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().