Asymptotic properties of Bayesian inference in linear regression with a structural break
Kenichi Shimizu
Journal of Econometrics, 2023, vol. 235, issue 1, 202-219
Abstract:
This paper studies large sample properties of a Bayesian approach to inference about slope parameters γ in linear regression models with a structural break. In contrast to the conventional approach to inference about γ that does not take into account the uncertainty of the unknown break date, the Bayesian approach that we consider incorporates such uncertainty. Our main theoretical contribution is a Bernstein–von Mises type theorem (Bayesian asymptotic normality) for γ under a wide class of priors, which essentially indicates an asymptotic equivalence between the conventional frequentist and Bayesian inference. Consequently, a frequentist researcher could look at credible intervals of γ to check robustness with respect to the uncertainty of the break date. Simulation studies show that the conventional confidence intervals of γ tend to undercover in finite samples whereas the credible intervals offer more reasonable coverages in general. As the sample size increases, the two methods coincide, as predicted from our theoretical conclusion. Using data from Paye and Timmermann (2006) on stock return prediction, we illustrate that the traditional confidence intervals on γ might underrepresent the true sampling uncertainty.
Keywords: Structural break; Bernstein–von Mises theorem; Sensitivity check; Model averaging (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762200077X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Asymptotic properties of Bayesian inference in linear regression with a structural break (2022) 
Working Paper: Asymptotic properties of Bayesian inference in linear regression with a structural break (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:1:p:202-219
DOI: 10.1016/j.jeconom.2022.03.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().