The distribution of rolling regression estimators
Zongwu Cai and
Ted Juhl
Journal of Econometrics, 2023, vol. 235, issue 2, 1447-1463
Abstract:
We establish the asymptotic distribution for rolling linear regression models using various window widths. The limiting distribution depends on the width of the rolling window and on a “bias process” that is typically ignored in practice. Based on the asymptotic distribution, we tabulate critical values used to find uniform confidence intervals for the average values of regression parameters over the windows. We propose a corrected rolling regression technique that removes the bias process by rolling over smoothed parameter estimates. The procedure is illustrated using a series of Monte Carlo experiments. The paper includes an empirical example to show how the confidence bands suggest alternative conclusions about the persistence of inflation.
Keywords: Parameter instability; Nonparametric estimation; Rolling regressions; Uniform confidence intervals; Nonstationary (search for similar items in EconPapers)
JEL-codes: C14 C22 C5 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622002068
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:1447-1463
DOI: 10.1016/j.jeconom.2022.12.001
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().