EconPapers    
Economics at your fingertips  
 

Joint inference based on Stein-type averaging estimators in the linear regression model

Tom Boot

Journal of Econometrics, 2023, vol. 235, issue 2, 1542-1563

Abstract: While averaging unrestricted with restricted estimators is known to reduce estimation risk, it is an open question whether this reduction in turn can improve inference. To analyze this question, we construct joint confidence regions centered at James–Stein averaging estimators in both homoskedastic and heteroskedastic linear regression models. These regions are asymptotically valid when the number of restrictions increases possibly proportionally with the sample size. When used for hypothesis testing, we show that suitable restrictions enhance power over the standard F-test. We study the practical implementation through simulations and an application to consumption-based asset pricing.

Keywords: Model averaging; James–Stein; Confidence regions (search for similar items in EconPapers)
JEL-codes: C12 C52 G12 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623000155
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:1542-1563

DOI: 10.1016/j.jeconom.2023.01.006

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1542-1563