EconPapers    
Economics at your fingertips  
 

Sharpe Ratio analysis in high dimensions: Residual-based nodewise regression in factor models

Mehmet Caner, Marcelo Medeiros () and Gabriel F.R. Vasconcelos

Journal of Econometrics, 2023, vol. 235, issue 2, 393-417

Abstract: We provide a new theory for nodewise regression when the residuals from a fitted factor model are used. We apply our results to the analysis of the consistency of Sharpe Ratio estimators when there are many assets in a portfolio. We allow for an increasing number of assets as well as time observations of the portfolio. Since the nodewise regression is not feasible due to the unknown nature of idiosyncratic errors, we provide a feasible-residual-based nodewise regression to estimate the precision matrix of errors which is consistent even when number of assets, p, exceeds the time span of the portfolio, n. In another new development, we also show that the precision matrix of returns can be estimated consistently, even with an increasing number of factors and p>n. We show that: (1) with p>n, the Sharpe Ratio estimators are consistent in global minimum-variance and mean–variance portfolios; and (2) with p>n, the maximum Sharpe Ratio estimator is consistent when the portfolio weights sum to one; and (3) with p<Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622000926
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Sharpe Ratio Analysis in High Dimensions: Residual-Based Nodewise Regression in Factor Models (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:393-417

DOI: 10.1016/j.jeconom.2022.03.009

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:393-417