Variance–covariance from a metropolis chain on a curved, singular manifold
A. Ronald Gallant
Journal of Econometrics, 2023, vol. 235, issue 2, 843-861
Abstract:
We consider estimation of variance and covariance from a point cloud that are draws from a posterior distribution that lie on a curved, singular manifold. The motivating application is Bayesian inference regarding a likelihood subject to overidentified moment equations using MCMC (Markov Chain Monte Carlo). The MCMC draws lie on a singular manifold that typically is curved. Variance and covariance are Euclidean concepts. A curved, singular manifold is not typically a Euclidean space. We explore some suggestions on how to adapt a Euclidean concept to a non-Euclidean space then build on them to propose and illustrate appropriate methods.
Keywords: Method of moments; Bayesian inference; Simultaneously valid credibility intervals; Point cloud; Curved; Singular manifold (search for similar items in EconPapers)
JEL-codes: C11 C14 C15 C32 C36 C58 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622001506
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:843-861
DOI: 10.1016/j.jeconom.2022.08.002
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().