Identification of auction models using order statistics
Yao Luo and
Ruli Xiao
Journal of Econometrics, 2023, vol. 236, issue 1
Abstract:
Auction data often contain information on only the most competitive bids as opposed to all bids. The usual measurement error approaches to unobserved heterogeneity are inapplicable due to dependence among order statistics. We bridge this gap by providing a set of positive identification results. First, we show that symmetric auctions with discrete unobserved heterogeneity are identifiable using two consecutive order statistics and an instrument. Second, we extend the results to ascending auctions with unknown competition and unobserved heterogeneity.
Keywords: Consecutive order statistics; Finite mixture; Unobserved competition; Multidimensional unobserved heterogeneity (search for similar items in EconPapers)
JEL-codes: C14 D44 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623001513
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:236:y:2023:i:1:s0304407623001513
DOI: 10.1016/j.jeconom.2023.04.003
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().