Inference under covariate-adaptive randomization with imperfect compliance
Federico A. Bugni and
Mengsi Gao
Journal of Econometrics, 2023, vol. 237, issue 1
Abstract:
This paper studies inference in a randomized controlled trial (RCT) with covariate-adaptive randomization (CAR) and imperfect compliance of a binary treatment. In this context, we study inference on the local average treatment effect (LATE), i.e., the average treatment effect conditional on individuals that always comply with the assigned treatment. As in Bugni et al. (2018, 2019), CAR refers to randomization schemes that first stratify according to baseline covariates and then assign treatment status so as to achieve “balance” within each stratum. In contrast to these papers, however, we allow participants of the RCT to endogenously decide to comply or not with the assigned treatment status.
Keywords: Covariate-adaptive randomization; Stratified block randomization; Treatment assignment; Randomized controlled trial; Strata fixed effects; Saturated regression; Imperfect compliance (search for similar items in EconPapers)
JEL-codes: C12 C14 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623002130
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:237:y:2023:i:1:s0304407623002130
DOI: 10.1016/j.jeconom.2023.105497
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().