EconPapers    
Economics at your fingertips  
 

Penetrating sporadic return predictability

Yundong Tu and Xinling Xie

Journal of Econometrics, 2023, vol. 237, issue 1

Abstract: Return predictability has been one of the central research questions in finance for many decades. This paper proposes a predictive regression with multiple structural changes to capture the sporadic predictive ability of potential predictors for the return series. An adaptive group Lasso procedure, augmented with a forward regression for break screening, is adopted to efficiently and consistently identify the structural breaks in the predictive regression, with predictors exhibiting low signal strength and heterogeneous degrees of persistence. To enhance the prediction accuracy, adaptive Lasso is further used to eliminate the irrelevant predictors and is shown to achieve the oracle property. Simulation studies demonstrate the effectiveness of the proposed methods in break detection and predictor selection, and further show that ignoring structural breaks could abate predictability. The application to predicting U.S. equity premium illustrates the practical merits of our methodology in revealing return predictability that changes over time.

Keywords: Break point; Persistence imbalance; Predictive regression; Screening; Shrinkage estimation (search for similar items in EconPapers)
JEL-codes: C22 C51 C52 C53 C61 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623002257
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:237:y:2023:i:1:s0304407623002257

DOI: 10.1016/j.jeconom.2023.105509

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407623002257