Transformed regression-based long-horizon predictability tests
Matei Demetrescu,
Paulo Rodrigues and
Robert Taylor
Journal of Econometrics, 2023, vol. 237, issue 2
Abstract:
We propose new tests for long-horizon predictability based on IVX estimation of a transformed regression which explicitly accounts for the over-lapping nature of the dependent variable in the long-horizon regression arising from temporal aggregation. To improve efficiency, we moreover incorporate the residual augmentation approach recently used in the context of short-horizon predictability testing by Demetrescu and Rodrigues (2022). Our proposed tests improve on extant tests in the literature in a number of ways. First, they allow practitioners to remain ambivalent over the strength of the persistence of the predictors. Second, they are valid under much weaker conditions on the innovations than extant long-horizon predictability tests; in particular, we allow for general forms of conditional and unconditional heteroskedasticity in the innovations, neither of which are tied to a parametric model. Third, unlike the popular Bonferroni-based methods in the literature, our proposed tests can handle multiple predictors, and can be easily implemented as either one or two-sided hypotheses tests. Monte Carlo analysis suggests that our preferred tests offer improved finite sample properties compared to the leading tests in the literature. We report results from an empirical application investigating the use of real exchange rates for predicting nominal exchange rates and inflation.
Keywords: Long-horizon predictive regression; IVX estimation; (Un)conditional heteroskedasticity; Unknown regressor persistence; Endogeneity; Residual augmentation (search for similar items in EconPapers)
JEL-codes: C12 C22 G17 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622001294
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Transformed Regression-based Long-Horizon Predictability Tests (2022) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:237:y:2023:i:2:s0304407622001294
DOI: 10.1016/j.jeconom.2022.06.006
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().