EconPapers    
Economics at your fingertips  
 

Taking stock of long-horizon predictability tests: Are factor returns predictable?

Alexandros Kostakis, Tassos Magdalinos and Michalis P. Stamatogiannis

Journal of Econometrics, 2023, vol. 237, issue 2

Abstract: This study provides a critical assessment of long-horizon return predictability tests using highly persistent regressors. We show that the commonly used statistics are typically oversized, leading to spurious inference. Instead, we propose a Wald statistic, which accommodates multiple predictors of (unknown) arbitrary persistence degree within the I(0)-I(1) range. The test statistic, based on an adaptation of the IVX procedure to a long-horizon regression framework, is shown to have a standard chi-squared asymptotic distribution (regardless of the stochastic properties of the regressors used as predictors) and to exhibit excellent finite-sample size and power properties. Employing this test statistic, we find evidence of predictability for “old” and “new” pricing factors with monthly returns, but this becomes weaker as the predictive horizon increases. The predictability evidence substantially weakens with annual data. Overall, we question the incremental value of using long-horizon predictive regressions.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623000052
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:237:y:2023:i:2:s0304407623000052

DOI: 10.1016/j.jeconom.2022.10.009

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:237:y:2023:i:2:s0304407623000052