Asset pricing with neural networks: Significance tests
Hasan Fallahgoul,
Vincentius Franstianto and
Xin Lin
Journal of Econometrics, 2024, vol. 238, issue 1
Abstract:
This study proposes a novel hypothesis test for evaluating the statistical significance of input variables in multi-layer perceptron (MLP) regression models. Theoretical foundations are established through consistency results and estimation rate analysis using the sieves method. To validate the test’s performance in complex and realistic settings, an extensive Monte Carlo simulation is conducted. Results of the simulation reveal that the test has a high power and low rate of false positives, making it a powerful tool for detecting true effects in data. The test is further applied to identify the most influential predictors of equity risk premiums, with results indicating that only a small number of characteristics have statistical significance and all macroeconomic predictors are insignificant at the 1% level. These findings are consistent across a variety of neural network architectures.
Keywords: Asset Pricing; Risk Premium; Neural Networks; Variable Significance Test (search for similar items in EconPapers)
JEL-codes: C1 C5 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623002907
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002907
DOI: 10.1016/j.jeconom.2023.105574
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().