A conditional linear combination test with many weak instruments
Dennis Lim,
Wenjie Wang and
Yichong Zhang
Journal of Econometrics, 2024, vol. 238, issue 2
Abstract:
We consider a linear combination of jackknife Anderson-Rubin (AR), jackknife Lagrangian multiplier (LM), and orthogonalized jackknife LM tests for inference in IV regressions with many weak instruments and heteroskedasticity. Following I.Andrews (2016), we choose the weights in the linear combination based on a decision-theoretic rule that is adaptive to the identification strength. Under both weak and strong identifications, the proposed test controls asymptotic size and is admissible among certain class of tests. Under strong identification, our linear combination test has optimal power against local alternatives among the class of invariant or unbiased tests which are constructed based on jackknife AR and LM tests. Simulations and an empirical application to Angrist and Krueger’s (1991) dataset confirm the good power properties of our test.
Keywords: Many instruments; Power; Size; Weak identification (search for similar items in EconPapers)
JEL-codes: C12 C36 C55 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623003184
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:238:y:2024:i:2:s0304407623003184
DOI: 10.1016/j.jeconom.2023.105602
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().