Distributed estimation and inference for spatial autoregression model with large scale networks
Yimeng Ren,
Zhe Li,
Xuening Zhu,
Yuan Gao and
Hansheng Wang
Journal of Econometrics, 2024, vol. 238, issue 2
Abstract:
The rapid growth of online network platforms generates large-scale network data and it poses great challenges for statistical analysis using the spatial autoregression (SAR) model. In this work, we develop a novel distributed estimation and statistical inference framework for the SAR model on a distributed system. We first propose a distributed network least squares approximation (DNLSA) method. This enables us to obtain a one-step estimator by taking a weighted average of local estimators on each worker. Afterwards, a refined two-step estimation is designed to further reduce the estimation bias. For statistical inference, we utilize a random projection method to reduce the expensive communication cost. Theoretically, we show the consistency and asymptotic normality of both the one-step and two-step estimators. In addition, we provide theoretical guarantee of the distributed statistical inference procedure. The theoretical findings and computational advantages are validated by several numerical simulations implemented on the Spark system. Lastly, an experiment on the Yelp dataset further illustrates the usefulness of the proposed methodology.
Keywords: Spatial autoregression; Large-scale network data; Distributed system; Least squares approximation; Random projection (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623003457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:238:y:2024:i:2:s0304407623003457
DOI: 10.1016/j.jeconom.2023.105629
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().