EconPapers    
Economics at your fingertips  
 

Sparse generalized Yule–Walker estimation for large spatio-temporal autoregressions with an application to NO2 satellite data

Hanno Reuvers and Etienne Wijler

Journal of Econometrics, 2024, vol. 239, issue 1

Abstract: We consider a high-dimensional model in which variables are observed over time and space. The model consists of a spatio-temporal regression containing a time lag and a spatial lag of the dependent variable. Unlike classical spatial autoregressive models, we do not rely on a predetermined spatial interaction matrix, but infer all spatial interactions from the data. Assuming sparsity, we estimate the spatial and temporal dependence fully data-driven by penalizing a set of Yule–Walker equations. This regularization can be left unstructured, but we also propose customized shrinkage procedures when observations originate from spatial grids (e.g. satellite images). Finite sample error bounds are derived and estimation consistency is established in an asymptotic framework wherein the sample size and the number of spatial units diverge jointly. Exogenous variables can be included as well. A simulation exercise shows strong finite sample performance compared to competing procedures. As an empirical application, we model satellite measured nitrogen dioxide (NO2) concentrations in London. Our approach delivers forecast improvements over a competitive benchmark and we discover evidence for strong spatial interactions.

Keywords: Spatio-temporal models; SPLASH; Satellite data; Yule–Walker; High-dimensional (search for similar items in EconPapers)
JEL-codes: C33 C53 C55 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407623002361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:239:y:2024:i:1:s0304407623002361

DOI: 10.1016/j.jeconom.2023.105520

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:239:y:2024:i:1:s0304407623002361