Testing equality of several distributions in separable metric spaces: A maximum mean discrepancy based approach
Jin-Ting Zhang,
Jia Guo and
Bu Zhou
Journal of Econometrics, 2024, vol. 239, issue 2
Abstract:
A new test for equal distributions of several high-dimensional samples in separable metric spaces, with its test statistic constructed based on maximum mean discrepancy, is proposed and studied. The asymptotic null and alternative distributions of the test statistic are established under some mild conditions. The new test is implemented via a three-cumulant matched chi-square approximation with the associated approximation parameters consistently estimated from the data. A new data-adaptive Gaussian kernel width selection method is also suggested. Good performance of the new test is illustrated by intensive simulation studies and a real data example of Gini index curves.
Keywords: Data heterogeneity; Multi-sample test for equal distributions; Maximum mean discrepancy; Three-cumulant matched chi-square-approximation; Gaussian kernel (search for similar items in EconPapers)
JEL-codes: C12 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622000859
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:239:y:2024:i:2:s0304407622000859
DOI: 10.1016/j.jeconom.2022.03.007
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().