A latent class Cox model for heterogeneous time-to-event data
Youquan Pei,
Heng Peng and
Jinfeng Xu
Journal of Econometrics, 2024, vol. 239, issue 2
Abstract:
Credit risk plays a vital role in the era of digital finance and it is one of primary interests to identify customers with similar types of risk categories so that personalized financial services can be offered accordingly. Motivated by the bourgeoning need for default risk modeling in finance, we propose herein a latent class Cox model for heterogeneous time-to-event data. The proposed model naturally extends the Cox proportional hazards model to flexibly take into account the heterogeneity of covariate effects as often manifested in real data. Without a priori specification of the number of latent classes, it simultaneously incorporates the commonalities and disparities of individual customers’ risk behaviors and provides a more refined modeling technique than existing approaches. We further propose a penalized maximum likelihood approach to identify the number of latent classes and estimate the model parameters. A modified expectation–maximization algorithm is then developed for its numerical implementation. Simulation studies are conducted to assess the finite-sample performance of the proposed approach. Its illustration with a real credit card data set is also provided.
Keywords: Default risk; EM algorithm; Heterogeneous covariate effects; Latent class model; Penalized likelihood; Survival data (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622001841
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:239:y:2024:i:2:s0304407622001841
DOI: 10.1016/j.jeconom.2022.08.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().