The law of large numbers for large stable matchings
Jacob Schwartz and
Kyungchul Song
Journal of Econometrics, 2024, vol. 241, issue 1
Abstract:
In many empirical studies of a large two-sided matching market (such as in a college admissions problem), the researcher performs statistical inference under the assumption that they observe a random sample from a large matching market. In this paper, we consider a setting in which the researcher observes either all or a nontrivial fraction of outcomes from a stable matching. We establish a concentration inequality for empirical matching probabilities assuming strong correlation among the colleges’ preferences while allowing students’ preferences to be fully heterogeneous. Our concentration inequality yields laws of large numbers for the empirical matching probabilities and other statistics commonly used in empirical analyses of a large matching market. To illustrate the usefulness of our concentration inequality, we prove consistency for estimators of conditional matching probabilities and measures of positive assortative matching.
Keywords: Two-sided matching; Concentration inequality; Stable matching; Law of large numbers; Correlated preferences (search for similar items in EconPapers)
JEL-codes: C13 C78 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624000885
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:241:y:2024:i:1:s0304407624000885
DOI: 10.1016/j.jeconom.2024.105742
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().