Robust inference of panel data models with interactive fixed effects under long memory: A frequency domain approach
Shuyao Ke,
Peter Phillips and
Liangjun Su ()
Journal of Econometrics, 2024, vol. 241, issue 2
Abstract:
This paper studies a linear panel data model with interactive fixed effects wherein regressors, factors and idiosyncratic error terms are all stationary but with potential long memory. The setup involves a new formulation of panel data models, where weakly dependent regressors, factors and idiosyncratic errors are embedded as a special case. Standard methods based on principal component decomposition and least squares estimation, as in Bai (2009), are found to be biased and distorted in inference. To cope with this failure and to provide a simple implementable estimation procedure, a frequency domain least squares estimation is proposed. The limit distribution of the frequency domain estimator is established and a self-normalized approach to inference without the need for plug-in estimation of memory parameters is developed. Simulations show that the frequency domain estimator performs robustly under short memory and outperforms the time domain estimator when long range dependence is present. An empirical illustration is provided, examining the long-run relationship between stock returns and realized volatility.
Keywords: Factor error structure; Fourier transform; Frequency domain regression; Interactive fixed effects; Long-range dependence; Principal components (search for similar items in EconPapers)
JEL-codes: C22 C23 C38 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624001076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:241:y:2024:i:2:s0304407624001076
DOI: 10.1016/j.jeconom.2024.105761
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().