The local to unity dynamic Tobit model
Anna Bykhovskaya and
James A. Duffy
Journal of Econometrics, 2024, vol. 241, issue 2
Abstract:
This paper considers highly persistent time series that are subject to nonlinearities in the form of censoring or an occasionally binding constraint, such as are regularly encountered in macroeconomics. A tractable candidate model for such series is the dynamic Tobit with a root local to unity. We show that this model generates a process that converges weakly to a non-standard limiting process, that is constrained (regulated) to be positive. Surprisingly, despite the presence of censoring, the OLS estimators of the model parameters are consistent. We show that this allows OLS-based inferences to be drawn on the overall persistence of the process (as measured by the sum of the autoregressive coefficients), and for the null of a unit root to be tested in the presence of censoring. Our simulations illustrate that the conventional ADF test substantially over-rejects when the data is generated by a dynamic Tobit with a unit root, whereas our proposed test is correctly sized. We provide an application of our methods to testing for a unit root in the Swiss franc/euro exchange rate, during a period when this was subject to an occasionally binding lower bound.
Keywords: Non-negative time series; Dynamic tobit; Local unit root; Unit root test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624001106
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:241:y:2024:i:2:s0304407624001106
DOI: 10.1016/j.jeconom.2024.105764
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().