Nonlinear and nonseparable structural functions in regression discontinuity designs with a continuous treatment
Haitian Xie
Journal of Econometrics, 2024, vol. 242, issue 1
Abstract:
Many empirical examples of regression discontinuity (RD) designs concern a continuous treatment variable, but the theoretical aspects of such models are less studied. This study examines the identification and estimation of the structural function in fuzzy RD designs with a continuous treatment variable. The structural function fully describes the causal impact of the treatment on the outcome. We show that the nonlinear and nonseparable structural function can be nonparametrically identified at the RD cutoff under shape restrictions, including monotonicity and smoothness conditions. Based on the nonparametric identification equation, we propose a three-step semiparametric estimation procedure and establish the asymptotic normality of the estimator. The semiparametric estimator achieves the same convergence rate as in the case of a binary treatment variable. As an application of the method, we estimate the causal effect of sleep time on health status by using the discontinuity in natural light timing at time zone boundaries.
Keywords: Causal inference; Continuous treatment; Dual monotonicity; Nonparametric identification; Semiparametric estimation; Asymptotic normality (search for similar items in EconPapers)
JEL-codes: C14 C21 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624001301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:242:y:2024:i:1:s0304407624001301
DOI: 10.1016/j.jeconom.2024.105784
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().