A method of moments approach to asymptotically unbiased Synthetic Controls
Joseph Fry
Journal of Econometrics, 2024, vol. 244, issue 1
Abstract:
A common approach to constructing a Synthetic Control unit is to fit on the outcome variable and covariates in pre-treatment time periods, but it has been shown by Ferman and Pinto (2021) that this approach does not provide asymptotic unbiasedness when the fit is imperfect and the number of controls is fixed. Many related panel methods have a similar limitation when the number of units is fixed. I introduce and evaluate a new method in which the Synthetic Control is constructed using a General Method of Moments approach where units not being included in the Synthetic Control are used as instruments. I show that a Synthetic Control Estimator of this form will be asymptotically unbiased as the number of pre-treatment time periods goes to infinity, even when pre-treatment fit is imperfect and the number of units is fixed. Furthermore, if both the number of pre-treatment and post-treatment time periods go to infinity, then averages of treatment effects can be consistently estimated. I provide a model selection procedure for deciding whether a unit should be used as an instrument or as a control. I also conduct simulations and an empirical application to compare the performance of this method with existing approaches in the literature.
Keywords: Synthetic control; General method of moments; Policy evaluation; Factor model; Instrumental variables (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030440762400191X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:244:y:2024:i:1:s030440762400191x
DOI: 10.1016/j.jeconom.2024.105846
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().