EconPapers    
Economics at your fingertips  
 

On uniform confidence intervals for the tail index and the extreme quantile

Yuya Sasaki and Yulong Wang

Journal of Econometrics, 2024, vol. 244, issue 1

Abstract: This paper presents two results concerning uniform confidence intervals for the tail index and the extreme quantile. First, we show that there exists a lower bound of the length for confidence intervals that satisfy the correct uniform coverage over a nonparametric family of tail distributions. Second, in light of the impossibility result, we construct honest confidence intervals that are uniformly valid by incorporating the worst-case bias in the nonparametric family. The proposed method is applied to simulated data and real data of financial time series.

Keywords: Honest confidence interval; Extreme quantile; Impossibility; Tail index; Uniform inference (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624002100
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:244:y:2024:i:1:s0304407624002100

DOI: 10.1016/j.jeconom.2024.105865

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:econom:v:244:y:2024:i:1:s0304407624002100