Weak identification in discrete choice models
David T. Frazier,
Eric Renault,
Lina Zhang and
Xueyan Zhao
Journal of Econometrics, 2025, vol. 248, issue C
Abstract:
We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identification in commonly applied discrete choice models, such as probit, logit, and many of their extensions. Furthermore, we demonstrate that when the null hypothesis of weak identification is rejected, Wald-based inference can be carried out using standard formulas and critical values. A Monte Carlo study compares our proposed testing approach against commonly applied weak identification tests. The results simultaneously demonstrate the good performance of our approach and the fundamental failure of using conventional weak identification tests for linear models in the discrete choice model context. Lastly, we apply our approach in two empirical examples: married women labor force participation, and US food aid and civil conflicts.
Keywords: Discrete choice models; Weak instruments; Weak identification; Identification testing (search for similar items in EconPapers)
JEL-codes: C12 C26 C35 C36 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624002112
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:248:y:2025:i:c:s0304407624002112
DOI: 10.1016/j.jeconom.2024.105866
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().