On superlevel sets of conditional densities and multivariate quantile regression
Annika Camehl,
Dennis Fok and
Kathrin Gruber
Journal of Econometrics, 2025, vol. 249, issue PA
Abstract:
Some common proposals of multivariate quantiles do not sufficiently control the probability content, while others do not always accurately reflect the concentration of probability mass. We suggest superlevel sets of conditional multivariate densities as an alternative to current multivariate quantile definitions. Hence, the superlevel set is a function of conditioning variables much like in quantile regression. We show that conditional superlevel sets have favorable mathematical and intuitive features, and support a clear probabilistic interpretation. We derive the superlevel sets for a conditional or marginal density of interest from an (overfitted) multivariate Gaussian mixture model. This approach guarantees logically consistent (i.e., non-crossing) conditional superlevel sets and also allows us to obtain more traditional univariate quantiles. We demonstrate recovery of the true conditional univariate quantiles for distributions with correlation, heteroskedasticity, or asymmetry and apply our method in univariate and multivariate settings to a study on household expenditures.
Keywords: Multiple response; Bayesian quantile regression; Gaussian mixture model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624001532
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:249:y:2025:i:pa:s0304407624001532
DOI: 10.1016/j.jeconom.2024.105807
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().