Inference for large dimensional factor models under general missing data patterns
Liangjun Su () and
Fa Wang
Journal of Econometrics, 2025, vol. 250, issue C
Abstract:
This paper establishes the inferential theory for the least squares estimation of large factor models with missing data. We propose a unified framework for asymptotic analysis of factor models that covers a wide range of missing patterns, including heterogenous random missing, selection on covariates/factors/loadings, block/staggered missing, mixed frequency and ragged edge. We establish the average convergence rates of the estimated factor space and loading space, the limit distributions of the estimated factors and loadings, as well as the limit distributions of the estimated average treatment effects and the parameter estimates in the factor-augmented regressions. These results allow us to impute the unbalanced panel appropriately or make inference for the heterogenous treatment effects. For computation, we can use the nuclear norm regularized estimator as the initial value for the EM algorithm and iterate until convergence. Empirically, we apply our method to test the average treatment effects of partisan alignment on grant allocation in UK.
Keywords: Factor models; Missing data; EM algorithm; Least squares; Matrix completion; Nuclear norm; Causal inference; Mixed frequency (search for similar items in EconPapers)
JEL-codes: C13 C33 C38 C55 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407625000764
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:250:y:2025:i:c:s0304407625000764
DOI: 10.1016/j.jeconom.2025.106022
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().