EconPapers    
Economics at your fingertips  
 

Asymptotic theory of the best-choice rerandomization using the Mahalanobis distance

Yuhao Wang and Xinran Li

Journal of Econometrics, 2025, vol. 251, issue C

Abstract: Rerandomization, a design that utilizes pretreatment covariates and improves their balance between different treatment groups, has received attention recently in both theory and practice. From a survey by Bruhn and McKenzie (2009), there are at least two types of rerandomization that are used in practice: the first rerandomizes the treatment assignment until covariate imbalance is below a prespecified threshold; the second randomizes the treatment assignment multiple times and chooses the one with the best covariate balance. In this paper we will consider the second type of rerandomization, namely the best-choice rerandomization, whose theory and inference are still lacking in the literature. In particular, we will focus on the best-choice rerandomization that uses the Mahalanobis distance to measure covariate imbalance, which is one of the most commonly used imbalance measure for multivariate covariates and is invariant to affine transformations of covariates. We will study the large-sample repeatedly sampling properties of the best-choice rerandomization, allowing both the number of covariates and the number of tried complete randomizations to increase with the sample size. We show that the asymptotic distribution of the difference-in-means estimator is more concentrated around the true average treatment effect under rerandomization than under the complete randomization, and propose large-sample accurate confidence intervals for rerandomization that are shorter than that for the completely randomized experiment. We further demonstrate that, with moderate number of covariates and with the number of tried randomizations increasing polynomially with the sample size, the best-choice rerandomization can achieve the ideally optimal precision that one can expect even with perfectly balanced covariates. The developed theory and methods for rerandomization are also illustrated using real field experiments.

Keywords: Potential outcome; Design-based inference; Optimal rerandomization; Diverging number of covariates; Berry–Esseen bound (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407625001034
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001034

DOI: 10.1016/j.jeconom.2025.106049

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-09
Handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001034