The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions
Tucker McElroy () and
Marc Wildi
Econometrics and Statistics, 2020, vol. 14, issue C, 112-130
Abstract:
Numerous contexts in macroeconomics, finance, and quality control require real-time estimation of trends, turning points, and anomalies. The real-time signal extraction problem is formulated as a multivariate linear prediction problem, the optimal solution is presented in terms of a known model, and multivariate direct filter analysis is proposed to address the more typical situation where the process’ model is unknown. It is shown how general constraints – such as level and time shift constraints – can be imposed on a concurrent filter in order to guarantee that real-time estimates have requisite properties. The methodology is applied to petroleum and construction data.
Keywords: Frequency Domain; Seasonality; Time Series; Trends (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S2452306220300034
Full text for ScienceDirect subscribers only. Contains open access articles
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecosta:v:14:y:2020:i:c:p:112-130
DOI: 10.1016/j.ecosta.2019.12.004
Access Statistics for this article
Econometrics and Statistics is currently edited by E.J. Kontoghiorghes, H. Van Dijk and A.M. Colubi
More articles in Econometrics and Statistics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().