New software tools for creating stated choice experimental designs efficient for regret minimisation and utility maximisation decision rules
Sander van Cranenburgh and
Andrew Collins
Journal of choice modelling, 2019, vol. 31, issue C, 104-123
Abstract:
At the time of creating an experimental design for a stated choice experiment, the analyst often does not precisely know which model, or decision rule, he or she will estimate once the data are collected. This paper presents two new software tools for creating stated choice experimental designs that are simultaneously efficient for regret minimisation and utility maximisation decision rules. The first software tool is a lean, easy-to-use and free-of-charge experimental design tool, which is dedicated to creating designs that incorporate regret minimisation and utility maximisation decision rules. The second tool constitutes a newly developed extension of Ngene – a widely used and richly featured software tool for the generation of experimental designs. To facilitate the use of the new software tools, this paper presents clear worked examples. It focusses on practical issues encountered when generating such decision rule robust designs, such as how to obtain priors and how to deal with alternative specific parameters. Furthermore, we analyse the robustness of the designs that we created using the new software tools. Our results provide evidence that designs optimised for one decision rule can be inefficient for another – highlighting the added value of decision rule robust designs.
Keywords: Efficient design; Random regret minimisation; Decision rules; Software; Ngene; RDG (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1755534518300940
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:eejocm:v:31:y:2019:i:c:p:104-123
DOI: 10.1016/j.jocm.2019.04.002
Access Statistics for this article
Journal of choice modelling is currently edited by S. Hess and J.M. Rose
More articles in Journal of choice modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().