Data envelopment analysis of mutual funds based on second-order stochastic dominance
Sebastián Lozano and
Ester Gutiérrez
European Journal of Operational Research, 2008, vol. 189, issue 1, 230-244
Abstract:
Although data envelopment analysis (DEA) has been extensively used to assess the performance of mutual funds (MF), most of the approaches overestimate the risk associated to the endogenous benchmark portfolio. This is because in the conventional DEA technology the risk of the target portfolio is computed as a linear combination of the risk of the assessed MF. This neglects the important effects of portfolio diversification. Other approaches based on mean-variance or mean-variance-skewness are non-linear. We propose to combine DEA with stochastic dominance criteria. Thus, in this paper, six distinct DEA-like linear programming (LP) models are proposed for computing relative efficiency scores consistent (in the sense of necessity) with second-order stochastic dominance (SSD). The aim is that, being SSD efficient, the obtained target portfolio should be an optimal benchmark for any rational risk-averse investor. The proposed models are compared with several related approaches from the literature.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00404-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:189:y:2008:i:1:p:230-244
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().