The effect of transformations on the approximation of univariate (convex) functions with applications to Pareto curves
A.Y.D. Siem,
Dick Den Hertog and
A.L. Hoffmann
European Journal of Operational Research, 2008, vol. 189, issue 2, 347-362
Abstract:
In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of univariate convex functions have been proposed. We study the effect of the use of transformations on the approximation of univariate (convex) functions. In this paper, we show that these transformations can be used to construct upper and lower bounds for nonconvex functions. Moreover, we show that by using such transformations of the input variable or the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without these approximations. We show that these transformations can be applied to the approximation of a (convex) Pareto curve that is associated with a (convex) bi-objective optimization problem.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00560-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:189:y:2008:i:2:p:347-362
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().