Nonconvex optimization using negative curvature within a modified linesearch
Alberto Olivares,
Javier M. Moguerza and
Francisco J. Prieto
European Journal of Operational Research, 2008, vol. 189, issue 3, 706-722
Abstract:
This paper describes a new algorithm for the solution of nonconvex unconstrained optimization problems, with the property of converging to points satisfying second-order necessary optimality conditions. The algorithm is based on a procedure which, from two descent directions, a Newton-type direction and a direction of negative curvature, selects in each iteration the linesearch model best adapted to the properties of these directions. The paper also presents results of numerical experiments that illustrate its practical efficiency.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(06)01179-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:189:y:2008:i:3:p:706-722
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().