Approximate methods for convex minimization problems with series-parallel structure
Adi Ben-Israel,
Genrikh Levin,
Yuri Levin and
Boris Rozin
European Journal of Operational Research, 2008, vol. 189, issue 3, 841-855
Abstract:
Consider a problem of minimizing a separable, strictly convex, monotone and differentiable function on a convex polyhedron generated by a system of m linear inequalities. The problem has a series-parallel structure, with the variables divided serially into n disjoint subsets, whose elements are considered in parallel. This special structure is exploited in two algorithms proposed here for the approximate solution of the problem. The first algorithm solves at most min{m, [nu] - n + 1} subproblems; each subproblem has exactly one equality constraint and at most n variables. The second algorithm solves a dynamically generated sequence of subproblems; each subproblem has at most [nu] - n + 1 equality constraints, where [nu] is the total number of variables. To solve these subproblems both algorithms use the authors' Projected Newton Bracketing method for linearly constrained convex minimization, in conjunction with the steepest descent method. We report the results of numerical experiments for both algorithms.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00660-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:189:y:2008:i:3:p:841-855
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().