Spatial defect pattern recognition on semiconductor wafers using model-based clustering and Bayesian inference
Tao Yuan and
Way Kuo
European Journal of Operational Research, 2008, vol. 190, issue 1, 228-240
Abstract:
Defects on semiconductor wafers tend to cluster and the spatial defect patterns contain useful information about potential problems in the manufacturing process. This study proposes to use model-based clustering algorithms via Bayesian inferences for spatial defect pattern recognition on semiconductor wafers. These new algorithms can find the number of defect clusters as well as identify the pattern of each cluster automatically. They are capable of detecting curvilinear patterns, ellipsoidal patterns and nonuniform global defect patterns. Promising results have been obtained from simulation studies.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00556-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:190:y:2008:i:1:p:228-240
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().