EconPapers    
Economics at your fingertips  
 

On a Feasible-Infeasible Two-Population (FI-2Pop) genetic algorithm for constrained optimization: Distance tracing and no free lunch

Steven Orla Kimbrough, Gary J. Koehler, Ming Lu and David Harlan Wood

European Journal of Operational Research, 2008, vol. 190, issue 2, 310-327

Abstract: We explore data-driven methods for gaining insight into the dynamics of a two-population genetic algorithm (GA), which has been effective in tests on constrained optimization problems. We track and compare one population of feasible solutions and another population of infeasible solutions. Feasible solutions are selected and bred to improve their objective function values. Infeasible solutions are selected and bred to reduce their constraint violations. Interbreeding between populations is completely indirect, that is, only through their offspring that happen to migrate to the other population. We introduce an empirical measure of distance, and apply it between individuals and between population centroids to monitor the progress of evolution. We find that the centroids of the two populations approach each other and stabilize. This is a valuable characterization of convergence. We find the infeasible population influences, and sometimes dominates, the genetic material of the optimum solution. Since the infeasible population is not evaluated by the objective function, it is free to explore boundary regions, where the optimum is likely to be found. Roughly speaking, the No Free Lunch theorems for optimization show that all blackbox algorithms (such as Genetic Algorithms) have the same average performance over the set of all problems. As such, our algorithm would, on average, be no better than random search or any other blackbox search method. However, we provide two general theorems that give conditions that render null the No Free Lunch results for the constrained optimization problem class we study. The approach taken here thereby escapes the No Free Lunch implications, per se.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00566-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:190:y:2008:i:2:p:310-327

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:310-327