EconPapers    
Economics at your fingertips  
 

A tabu search and a genetic algorithm for solving a bicriteria general job shop scheduling problem

Geoffrey Vilcot and Jean-Charles Billaut

European Journal of Operational Research, 2008, vol. 190, issue 2, 398-411

Abstract: This paper deals with a general job shop scheduling problem with multiple constraints, coming from printing and boarding industry. The objective is the minimization of two criteria, the makespan and the maximum lateness, and we are interested in finding an approximation of the Pareto frontier. We propose a fast and elitist genetic algorithm based on NSGA-II for solving the problem. The initial population of this algorithm is either randomly generated or partially generated by using a tabu search algorithm, that minimizes a linear combination of the two criteria. Both the genetic and the tabu search algorithms are tested on benchmark instances from flexible job shop literature and computational results show the interest of both methods to obtain an efficient and effective resolution method.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00632-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:190:y:2008:i:2:p:398-411

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ejores:v:190:y:2008:i:2:p:398-411