Risk-adjusted probability measures in portfolio optimization with coherent measures of risk
Naomi Miller and
Andrzej Ruszczynski ()
European Journal of Operational Research, 2008, vol. 191, issue 1, 193-206
Abstract:
We consider the problem of optimizing a portfolio of n assets, whose returns are described by a joint discrete distribution. We formulate the mean-risk model, using as risk functionals the semideviation, deviation from quantile, and spectral risk measures. Using the modern theory of measures of risk, we derive an equivalent representation of the portfolio problem as a zero-sum matrix game, and we provide ways to solve it by convex optimization techniques. In this way, we reconstruct new probability measures which constitute part of the saddle point of the game. These risk-adjusted measures always exist, irrespective of the completeness of the market. We provide an illustrative example, in which we derive these measures in a universe of 200 assets and we use them to evaluate the market portfolio and optimal risk-averse portfolios.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00867-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:191:y:2008:i:1:p:193-206
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().